投掷一个质地均匀的、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面标的数字是0,两个面标的数字是2,两个面标的数字是4,将此玩具连续抛掷两次,以两次朝上一面出的数字分别作为点P的横坐标和纵坐标。(1)求点P落在区域C:内的概率;(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M上的概率。
已知函数 (1)求不等式的解集; (2)若关于x的不等式的解集非空,求实数的取值范围.
如图,已知四边形ABCD内接于,且AB是的直径,过点D的的切线与BA的延长线交于点M. (1)若MD=6,MB=12,求AB的长; (2)若AM=AD,求∠DCB的大小.
已知函数 (1)若函数在点处的切线与圆相切,求的值; (2)当时,函数的图像恒在坐标轴轴的上方,试求出的取值范围.
已知函数 (1)当时,求函数的单调区间; (2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.,试问函数在上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.
已知为锐角,且,函数,数列{}的首项. (1)求函数的表达式; (2)求数列的前项和.