如图,直线分别与x轴、y轴交于A、B两点;直线与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿x轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).⑴求点C的坐标.⑵当0<t<5时,求S与t之间的函数关系式.⑶求⑵中S的最大值.⑷当t>0时,直接写出点(4,)在正方形PQMN内部时t的取值范围.
如图,一次函数的图象与反比例函数的图象交于P(-2,1)、Q(1,)两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出一次函数的值大于反比例函数的值的的取值范围.
如图,已知菱形ABCD,AB=AC,点E,F分别是BC,AD的中点,连接AE,CF.(1)求证:四边形AECF是矩形;(2)若AB=8,求菱形的面积.
如图所示,课外活动中,小明在离旗杆AB的10米C处,用测角仪测得旗杆顶部A的仰角,已知测角仪器的高CD=1. 5米,求旗杆AB的高.(精确到0.1米)(供选用的数据:,,)
如图,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.
(1)解方程:x-2=x(x-2)(2)计算: