((本小题满分12分)一项"过关游戏"规则规定: 在第n 关要抛掷骰子n次, 若这n次抛掷所出现的点数之和大于+1 (n∈N*), 则算过关.(1)求在这项游戏中第三关过关的概率是多少?(2) 若规定n≤3, 求某人的过关数ξ的期望.
已知△AOB的一个顶点为抛物线y2=2x的顶点O,A、B两点都在抛物线上,且∠AOB=90°. (1)证明直线AB必过一定点; (2)求△AOB面积的最小值.
已知双曲线的中心在原点,对称轴为坐标轴,焦点在x轴上,两准线间的距离为,并且与直线y=(x-4)相交所得线段的中点的横坐标为-,求这个双曲线的方程.
如图所示,过双曲线x2-=1的右焦点作直线与双曲线交于A、B两点,若OA⊥OB(O为坐标原点),求AB所在直线的方程.
经过双曲线x2-=1的左焦点F1作倾斜角为的弦AB,求: (1)|AB|; (2)△F2AB的周长(F2为右焦点).
已知抛物线y2=x上存在两点关于直线l:y=k(x-1)+1对称,求实数k的取值范围.