(本题满分14分)已知正项数列满足:对任意正整数,都有成等差数列,成等比数列,且(Ⅰ)求证:数列是等差数列;(Ⅱ)求数列的通项公式;(Ⅲ) 设如果对任意正整数,不等式恒成立,求实数的取值范围.
函数的定义域为,并满足以下条件:①对任意的; ②对任意的,都有;③. 1、求的值; 2、求证:是上的单调递增函数; 3、解关于的不等式:
如图,现有一块矩形空地,要在这块空地上开辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知,,且,设,绿地面积为. 1、写出关于的函数关系式,并指出其定义域; 2、当为何值时,绿地面积最大?
已知函数 (1)若函数为奇函数,求实数的值; (2)在(1)的条件下,求函数的值域
计算:1、; 2、已知,求的值.
已知全集,集合,, 求,(.