如图,在平面直角坐标系中,四边形为矩形,,,为直线上一动点,将直线绕点逆时针方向旋转交直线于点;(1)当点在线段上运动(不与重合)时,求证:OA·BQ=AP·BP;(2)在(1)成立的条件下,设点的横坐标为,线段的长度为,求出关于的函数解析式,并判断是否存在最小值,若存在,请求出最小值;若不存在,请说明理由。(3)直线上是否存在点,使为等腰三角形,若存在,请求出点的坐标;若不存在,请说明理由。
有六张完全相同的卡片,分A,B两组,每组三张,在A组的卡片上分别画上☆○☆,B组的卡片上分别画上☆○○,如图1所示.(1)若将卡片无标记的一面朝上摆在桌上,再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是☆的概率(请用画树形图法或列表法求解)(2)若把A,B两组卡片无标记的一面对应粘贴在一起得到3张卡片,其正反面标记如图2所示,将卡片正面朝上摆放在桌上,并用瓶盖盖住标记.若揭开盖子,看到的卡片正面标记是☆后,猜想它的反面也是☆,求猜对的概率是多少?
某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:.其图象如图.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?
已知:AD是△ABC的高,AD=,AB=4,tan∠ACD=,求BC的长.
如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进30海里到达B点,此时,测得海岛C位于北偏东30°的方向,求海岛C到航线AB的距离CD的长(结果保留根号).
如图,在⊙O中,弦AC与BD交于点E,AB=8,AE=6,ED=4,求CD的长.