(本小题满分10分)设函数的图象经过点.(1)求的解析式,并求函数的最小正周期.(2)若,若是面积为的锐角的内角,,求的长.
如图,将矩形ABCD沿对角线BD把△ABD折起,使A点移到A1点,且A1在平面BCD上的射影O恰好在CD上. (Ⅰ)求证:BC⊥A1D; (Ⅱ)求证:平面A1CD⊥平面A1BC; (Ⅲ)若AB=10,BC=6,求三棱锥A1﹣BCD的体积.
已知数列{an}是等比数列,首项a1=1,公比q>0,其前n项和为Sn,且S1+a1,S3+a3,S2+a2成等差数列. (Ⅰ)求数列{an}的通项公式; (Ⅱ)若数列{bn}满足,Tn为数列{bn}的前n项和,若Tn≥m恒成立,求m的最大值.
已知函数f(x)=|x-1|+|x-a|. (1)当a=2时,解不等式f(x)≥4; (2)若不等式f(x)≥a恒成立,求实数a的取值范围.
已知函数. (Ⅰ)函数在区间上是增函数还是减函数?证明你的结论; (Ⅱ)当时,恒成立,求整数的最大值; (Ⅲ)试证明:.
已知函数. (Ⅰ)当时,求函数的极值; (Ⅱ)时,讨论的单调性; (Ⅲ)若对任意的恒有成立,求实数的取值范围.