(本小题14分)(Ⅰ)若为的极值点,求的值;(Ⅱ)若的图象在点处的切线方程为,求在区间上的最大值;(Ⅲ)当时,若在区间上不单调,求的取值范围.
已知,命题“均成立”,命题“函数定义域为R”. (1)若命题为真命题,求实数的取值范围; (2)若命题为真命题,命题为假命题,求实数的取值范围.
已知是定义在上的奇函数,且,若,时,有成立. (1)判断在上的单调性,并证明; (2)解不等式:; (3)若当时,对所有的恒成立,求实数m的取值范围.
如图所示,在长方体中,,,M是棱的中点. (1)求异面直线和所成的角的正切值; (2)证明:平面平面.
某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健产品的收益与投资成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比. 已知投资1万元时两类产品的收益分别为万元和0.5万元. (1)分别写出两类产品的收益与投资的函数关系; (2)该家庭有20万元资金,全部用于理财投资,问,怎么分配资金能使投资获得最大收益,其最大收益是多少万元?
四面体ABCD中,,E、F分别是AD、BC的中点,且,,求证:平面ACD.