设,.(Ⅰ)令,讨论在内的单调性并求极值;(Ⅱ)求证:当时,恒有.
如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1,F分别是棱AD,AA1,AB的中点.(1)证明:直线EE1∥平面FCC1;(2)求二面角B-FC1-C的余弦值.
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB. (1)求证:CE⊥平面PAD;(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积.
已知Sn是数列{an}的前n项和,且an=Sn-1+2(n≥2),a1=2.(1)求数列{an}的通项公式.(2)设bn=,Tn=bn+1+bn+2+…+b2n,是否存在最大的正整数k,使得对于任意的正整数n,有Tn>恒成立?若存在,求出k的值;若不存在,说明理由.
已知等差数列{an}的前n项和为Sn,n∈N*,且a2=3,点(10,S10)在直线y=10x上.(1)求数列{an}的通项公式;(2)设bn=2an+2n,求数列{bn}的前n项和Tn.
设数列{an}的前n项和为Sn,已知ban-2n=(b-1)Sn.(1)证明:当b=2时,{an-n·2n-1}是等比数列;(2)求{an}的通项公式.