(本小题满分12分)已知椭圆,分别为顶点,F为焦点,过F作轴的垂线交椭圆于点C,且直线与直线OC平行.(1)求椭圆的离心率;(2)已知定点M(),为椭圆上的动点,若的重心轨迹经过点,求椭圆的方程.
在四棱锥中,平面ABCD,底面ABCD是菱形,,.(1)求证:平面PAC;(2)若,求PB与AC所成角的余弦值;(3)若PA=,求证:平面PBC⊥平面PDC
如图,S是正方形ABCD所在平面外一点,且SD⊥面ABCD ,AB=1,SB=.(1)求证:BCSC;(2) 设M为棱SA中点,求异面直线DM与SB所成角的大小(3) 求面ASD与面BSC所成二面角的大小;
如图,平面ABCD⊥平面ABEF,又ABCD是正方形,ABEF是矩形,且G是EF的中点.(1)求证:平面AGC⊥平面BGC;(2)求GB与平面AGC所成角的正弦值.
如图梯形ABCD,AD∥BC,∠A=900,过点C作CE∥AB,AD=2BC,AB=BC,,现将梯形沿CE折成直二面角D-EC-AB.(1)求直线BD与平面ABCE所成角的正切值;(2)设线段AB的中点为,在直线DE上是否存在一点,使得∥面BCD?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
已知四棱柱的底面是边长为1的正方形,侧棱垂直底边ABCD四棱柱,,E是侧棱AA1的中点,求(1)求异面直线与B1E所成角的大小;(2)求四面体的体积.