(本小题满分12分)已知椭圆,分别为顶点,F为焦点,过F作轴的垂线交椭圆于点C,且直线与直线OC平行.(1)求椭圆的离心率;(2)已知定点M(),为椭圆上的动点,若的重心轨迹经过点,求椭圆的方程.
已知:向量(O为坐标原点).(Ⅰ)求的最大值及此时的值组成的集合;(Ⅱ)若A点在直线上运动,求实数的取值范围.
((本小题满分14分)已知函数.(1)当时,如果函数仅有一个零点,求实数的取值范围;(2)当时,试比较与的大小;(3)求证:().
(本小题满分14分)已知数列是各项均不为的等差数列,公差为,为其前项和,且满足,.数列满足,为数列的前n项和.(1)求、和;(2)若对任意的,不等式恒成立,求实数的取值范围;(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.
((本小题满分14分)已知点是椭圆的右焦点,点、分别是轴、轴上的动点,且满足.若点满足.(1)求点的轨迹的方程;(2)设过点任作一直线与点的轨迹交于、两点,直线、与直线分别交于点、(为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,请说明理由.
((本小题满分14分)如图,是圆的直径,点在圆上,,交于点,平面,,.(1)证明:;(2)求平面与平面所成的锐二面角的余弦值.