已知函数(是常数),且,.(1) 求的值;(2) 当时,判断的单调性并证明;(3) 对任意的,若不等式恒成立,求实数的取值范围.
已知.(1)求的值;(2)若,求的值域.
函数.(1)若,求函数的定义域;(2)设,当实数时,证明:.
在平面直角坐标系中,已知曲线(θ为参数),将上的所有点的横坐标、纵坐标分别伸长为原来的和2倍后得到曲线,以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.(1)试写出曲线的极坐标方程与曲线的参数方程;(2)在曲线上求一点,使点到直线的距离最小,并求此最小值.
已知为半圆的直径,,为半圆上一点,过点圆的切线,过点作于,交半圆于点.(1)证明:平分;(2)求的长.
设函数在处的切线与轴相交于点.(1)求的值;(2)函数能否在处取得极值?若能取得,求此极值;若不能,请说明理由;(3)当时,试比较与大小.