某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有A、B两个题目,该学生答对A、B两题的概率分别为和,两题全部答对方可过入面试,面试要回答甲、乙两个题目,该学生答对这两个题目的概率均为,至少答对一题即可被聘用(假设每个环节的每个题目回答正确与否是相互独立的)(1)求该学生被公司聘用的概率;(2)设该学生答对题目的个数为,求的分布列和数学期望.
已知函数, (Ⅰ)求函数的最小正周期和图象的对称轴方程; (Ⅱ)求函数在区间上的值域。
设定函数(>0),且方程的两个根分别为1,4。 (Ⅰ)当=3且曲线过原点时,求的解析式; (Ⅱ)若在无极值点,求a的取值范围。
已知命题若非是的充分不必要条件,求的取值范围.
已知函数. (1)若,求曲线在点处的切线方程; (2)若函数在其定义域内为增函数,求正实数的取值范围; (3)设函数,若在上至少存在一点,使得>成立,求实数的取值范围。
设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计). (1)求方程有实根的概率; (2)求的分布列和数学期望; (3)求在先后两次出现的点数中有5的条件下,方程有实根的概率.