(本小题满分14分)已知数列满足。(Ⅰ)求证:数列是等差数列,并求通项;(Ⅱ)若,且,求和;(Ⅲ)比较的大小,并予以证明。
如图,在多面体中,四边形是菱形,相交于点,,,平面平面,,点为的中点.(1)求证:直线平面;(2)求证:直线平面.
(本小题满分12分)已知向量,=,函数,(1)求函数f(x)的解析式及其单调递增区间;(2)当x∈时,求函数f(x)的值域.
抛物线M: 的准线过椭圆N: 的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C. (1)求抛物线M的方程. (2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.
已知在四棱锥中,底面是矩形,且,,平面,、分别是线段、的中点. (1)证明: (2)若与平面所成的角为,求二面角的余弦值
已知函数,,直线与曲线切于点且与曲线切于点.(1)求a,b的值和直线的方程;(2)证明:.