如图9,在正方形网格中每个小正方形的边长都是单位1,已知△ABC和△A1B1C1关于点O成中心对称,点O直线x上.(1)在图中标出对称中心O的位置;(2)画出△A1B1C1关于直线x对称的△A2B2C2;(3)△ABC与△A2B2C2满足什么几何变换?
如图,防洪大堤的横断面是梯形,背水坡AB的坡比(指坡面的铅直高度与水平宽度的比).且AB="20" m.身高为1.7 m的小明站在大堤A点,测得高压电线杆端点D的仰角为30°.已知地面CB宽30 m,求高压电线杆CD的高度(结果保留三个有效数字,1.732).
今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A、B两水库各调出14万吨水支援甲、乙两地抗旱.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米. ⑴设从A水库调往甲地的水量为x万吨,完成下表
调出地
⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)
有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.⑴先后两次抽得的数字分别记为s和t,则︱s-t︱≥1的概率.⑵甲、乙两人做游戏,现有两种方案.A方案:若两次抽得相同花色则甲胜,否则乙胜.B方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率更高?
如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长.
为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图.⑴甲、乙两种品牌食用油各被抽取了多少瓶用于检测?⑵在该超市购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?