在一个口袋中有3个完全相同的小球,把它们分别标号为1、2、3,随机地摸取一个小球后放回,再随机地摸出一个小球.求“两次取的小球的标号相同”的概率。请借助列表法或树形图说明理由。
如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP⊥AB交边CD于点P,连接NM,NP. (1)若∠B=60°,这时点P与点C重合,则∠NMP= 度; (2)求证:NM=NP; (3)当△NPC为等腰三角形时,求∠B的度数.
定义:底与腰的比是的等腰三角形叫做黄金等腰三角形.如图,已知△ABC中,AB=BC,∠C=36°,BA1平分∠ABC交AC于A1.(1)=AA1•A C;(2)探究:△ABC是否为黄金等腰三角形?请说明理由;(提示:此处不妨设AC=1)(3)应用:已知AC=a,作A1B1∥AB交BC于B1,B1A2平分∠A1B1C交AC于A2,作A2B2∥AB交B2,B2A3平分∠A2B2C交AC于A3,作A3B3∥AB交BC于B3,…,依此规律操作下去,用含a,n的代数式表示An﹣1An.(n为大于1的整数,直接回答,不必说明理由)
如图.抛物线y=x2-4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y="x+" m与对称轴交于点Q. (1)这条抛物线的对称轴是 ,直线PQ与x軸所夹锐角的度数是 , (2)若两个三角形面积满足,求m的値: (3)当点P在x軸下方的抛物线上时.过点C(2,2)的直线AC与直线PQ交于点D,求: PD+DQ的最大值;②PDDQ的最大值.
已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC平分∠DCB ,延长DA,CB相交于点E.(1)如图1,EB=AD,求证:△ABE是等腰直角三角形;(2)如图2,连接OE,过点E作直线EF,使得∠OEF=30°,当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由.
图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).