(本小题满分14分)已知数列的前项和是,满足.(1)求数列的通项及前项和;(2)若数列满足,求数列的前项和;(3)若对任意的,恒有成立,求实数的取值范围.
已知函数. (1)求的值; (2)求函数在的最大值.
已知函数,,其中是的导函数. (1)对满足的一切的值,都有,求实数的取值范围; (2)设,当实数在什么范围内变化时,函数的图象与直线只有一个公共点.
已知函数,数列满足。 (1)求; (2)猜想数列的通项公式,并用数学归纳法予以证明。
分已知函数为大于零的常数。 (1)若函数内单调递增,求a的取值范围; (2)求函数在区间[1,2]上的最小值。
已知在时有极大值6,在时有极小值,求的值;并求在区间[-3,3]上的最大值和最小值.