围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m的进出口,如图所示已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元)⑴将y表示为x的函数;⑵写出f(x)的单调区间,并证明;⑶根据⑵,试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
(本大题满分12分) 某公司预计全年分批购入每台价值为2000元的电视机共3600台,每批都购入x台,且每批均需付运费400元,储存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比。若每批购入400台,则全年需用去运费和保管费43600元。现在全年只有24000元资金用于支付运费和保管费,请问能否恰当安排每批进货的数量,使资金够用?写出你的结论并说明理由
(本大题满分12分)中角A的对边长等于2,向量向量. (1)当取最大值时,求角A的大小; (2)在(1)条件下,求面积的最大值.
(本大题满分12分) 平面内有向量,点X为直线OP上的一动点。 (1)当取最小值时,求的坐标; (2)当点X满足(1)的条件和结论时,求的值.
已知数列中. (1)证明:数列是等比数列,并求出数列的通项公式; (2)记,数列的前n项和为,求使的n的最小值
设椭圆过点(,1),且左焦点为. (1)求椭圆的方程; (2)判断是否存在经过定点的直线与椭圆交于两点并且满足·,若存在求出直线的方程,不存在说明理由.