(本小题满分12分)如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,点D是AB的中点.(Ⅰ)求证:AC⊥BC1;(Ⅱ)求二面角的余弦值.
如图所示,四棱锥中,底面是边长为2的菱形,是棱上的动点. (1)若是的中点,求证://平面; (2)若,求证:; (3)在(2)的条件下,若,,,求四棱锥的体积.
如图,平行四边形中,,,且,正方形和平面垂直,是的中点. (1)求证:平面; (2)求证:∥平面; (3)求三棱锥的体积.
如图所示,ABCD是一块边长为100 m的正方形地皮,其中AST是一半径为90 m的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P在上,相邻两边CQ、CR落在正方形的边BC、CD上.求矩形停车场PQCR面积的最大值和最小值.
已知sin2θ(1+cotθ)+cos2θ(1+tanθ)=2,θ∈(0,2π),求tanθ的值.
已知△ABC的三个内角A、B、C,求当A为何值时,取得最大值,并求出这个最大值.