(本小题满分14分)现有甲、乙两个盒子,甲盒中装有4个白球和4个红球,乙盒中装有3个白球和若干个红球,若从乙盒中任取两个球,取到同色球的概率是.(1)求乙盒中红球的个数;(2)从甲、乙两个盒子中各任取两个球进行交换,若交换后乙盒子中的白球数和红球数相等,就说这次交换是成功的,试求交换成功的概率。(3)若从甲盒中任取两个球,放入乙盒中均匀后,再从乙盒中任意取出2个球放回到甲盒中,求甲盒中白球没有增加的概率;
已知都是正数,求证:
已知曲线的参数方程为为参数),在平面直角坐标系中,以坐标原点为极点,轴的非负半轴极轴建立极坐标系,曲线的极坐标方程为,求与交点的极坐标,其中
已知矩阵的逆矩阵,求曲线在矩阵对应的交换作用下所得的曲线方程.
如图,已知直线为圆的切线,切点为点在圆上,的角平分线交圆于点垂直交圆于点证明:
已知函数其中为常数. (1)当时,若函数在上的最小值为求的值; (2)讨论函数在区间上单调性; (3)若曲线上存在一点使得曲线在点处的切线与经过点的另一条切线互相垂直,求的取值范围.