ABCD为平行四边形,P为平面ABCD外一点,PA⊥面ABCD,且PA=AD=2,AB=1,AC=。求证:平面ACD⊥平面PAC;求异面直线PC与BD所成角的余弦值;设二面角A—PC—B的大小为,试求的值。
(本小题满分14分) 已知中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点(-1,),过点P(2,1)的直线l与椭圆C在第一象限相切于点M. (1)求椭圆C的方程; (2)求直线l的方程以及点M的坐标; (3)是否存在过点P的直线l与椭圆C相交于不同的两点A,B,满足·=?若存在,求出直线l的方程;若不存在,请说明理由.
(本小题满分14分) 已知函数f (x)=(2-a)(x-1)-2lnx,(a∈R,e为自然对数的底数) (1)当a=1时,求f (x)的单调区间; (2)若函数f (x)在(0,)上无零点,求a的最小值
(本小题满分13分) 已知菱形ABCD中,AB=4, (如图1所示),将菱形ABCD沿对角线翻折,使点翻折到点的位置(如图2所示),点E,F,M分别是AB,DC1,BC1的中点. (1)证明:BD //平面; (2)证明: (3)当时,求线段AC1的长.
(本小题满分12分) 已知数列{a}的前n项和Sn= —a—()+2 (n为正整数). (1)证明:a=a+ ().,并求数列{a}的通项 (2)若=,T= c+c+···+c,求T.
(本小题满分12分) 已知函数. (1)求的单调递增区间; (2)在中,角,,的对边分别为.已知,,试判断的形状.