椭圆的方程为,斜率为1的直线与椭圆交于两点.(Ⅰ)若椭圆的离心率,直线过点,且,求椭圆的方程;(Ⅱ)直线过椭圆的右焦点F,设向量,若点在椭圆上,求的取值范围.
(本小题满分14分) 在平面直角坐标系中,已知圆的圆心为,过点且斜率为的直线与圆相交于不同的两点. (Ⅰ)求的取值范围; (Ⅱ)是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由.
(本小题满分14分) (1)在平面直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为.求出的方程及其离心率的大小; (2)已知椭圆的一个顶点为A(0,-1),焦点在x轴上.若右焦点到直线的距离为3.求椭圆的方程
(本小题满分14分) 已知圆 (1)求圆心的坐标及半径的大小; (2)已知不过原点的直线与圆相切,且在轴、轴上的截距相等,求直线的方程.
(本小题满分14分) (1)求过点且与圆同心的圆C的方程, (2)求圆C过点的切线方程。
(本小题满分12分) 已知命题方程有两个不相等的实根;不等式的解集为,若为真,且为假,求实数的取值范围