(本小题满分14分)已知数列,满足,其中.(Ⅰ)若,求数列的通项公式;(Ⅱ)若,且.(ⅰ)记,求证:数列为等差数列;(ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次. 求首项应满足的条件.
已知函数. (1)若函数在上是增函数,求实数的取值范围; (2)若函数在上的最小值为3,求实数的值.
如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数的图象,且点M到边OA距离为. (1)当时,求直路所在的直线方程; (2)当为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?
在锐角△ABC中,角A、B、C的对边分别为a、b、c,且 (1)求角; (2)若,求面积S的最大值.
已知. (1)若,求的值; (2)若,且,求的值.
已知命题:“,使等式成立”是真命题. (1)求实数m的取值集合M; (2)设不等式的解集为N,若是的必要条件,求a的取值范围.