(本题满分10分)在等边△ABC中,D、E分别在AC、BC上,且AD=CE=nAC,连AE、BD相交于P,过B作BQ⊥AE于点Q,连CP. (1)∠BPQ=______,=____ (2)若BP⊥CP,求; (3)当n=_____时,BP⊥CP?
如图是潜望镜工作原理示意图,阴影部分是平行放置在潜望镜里的两面镜子.已知光线经过镜子反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线l为什么和离开潜望镜的光线m是平行的?(请把思考过程补充完整) 理由: 因为:AB∥CD(已知), 所以:∠2=∠3(). 因为:∠1=∠2,∠3=∠4(已知). 所以:∠1=∠2=∠3=∠4(等量代换). 所以:180°-∠1-∠2=180°-∠3-∠4(平角定义). 即:___________(等量代换). 所以:__________().
锐角中,,,两动点分别在边上滑动,且,以为边向下作正方形,设其边长为,正方形与公共部分的面积为. (1)中边上高; (2)当时,恰好落在边上(如图1); (3)当在外部时(如图2),求关于的函数关系式(注明的取值范围),并求出为何值时最大,最大值是多少?
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题: (1)求y与x的关系式; (2)当x取何值时,y的值最大? (3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
如图,在△ABC中,∠CAB=120°,AD是∠CAB的平分线,AC=6,AB=10. (1)求; (2)求AD的长.
如图,已知A(-4,2)、B(n,-4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点. (1)求此反比例函数和一次函数的解析式; (2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.