(本小题共13分)某同学设计一个摸奖游戏:箱内有红球3个,白球4个,黑球5个.每次任取一个,有放回地抽取3次为一次摸奖.至少有两个红球为一等奖,记2分;红、白、黑球各一个为二等奖,记1分;否则没有奖,记0分.(I)求一次摸奖中一等奖的概率;(II)求一次摸奖得分的分布列和期望.
(本小题满分12分)已知函数,,且. (Ⅰ)若,求的值; (Ⅱ)当时,求函数的最大值;
(本小题满分12分)如图,以原点O为顶点,以y轴为对称轴的抛物线E的焦点为F(0,1),点M是上任意一点,过点M引抛物线E的两条切线分别交x轴于点S,T,切点分别为B,A。 (Ⅰ)求抛物线E的方程; (Ⅱ)求证:点S,T在以FM为直径的圆上
(本小题满分12分)已知数列为等差数列,且.为等比数列,数列的前三项依次为3,7,13。求 (1)数列,的通项公式; (2)数列的前项和。
(本小题满分10分)已知。
(本小题满分10分)选修4-5:不等式选讲 设不等式的解集为A,且 (Ⅰ)求a的值; (Ⅱ)求函数的最小值。