(本小题满分14分) 设二次函数满足下列条件: ①当时,其最小值为0,且成立; ②当时,恒成立. (1)求的值; (2)求的解析式; (3)求最大的实数,使得存在,只要当时,就有成立
(本小题满分12分)已知定义域为R,(1)求的值域;(2在区间上,,求)
已知.(1)当时,求上的值域;(2) 求函数在上的最小值;(3) 证明: 对一切,都有成立
已知函数(1)求的值;(2)已知数列,求证数列是等差数列;(3)已知,求数列的前n项和.
已知椭圆C:=1(a>b>0)的离心率为,短轴一个端点到右焦点的距离为3.(1)求椭圆C的方程;(2)过椭圆C上的动点P引圆O:的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.
已知如图:平行四边形ABCD中,,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.(1)求证:GH∥平面CDE;(2)若,求四棱锥F-ABCD的体积.