(本小题满分14分) 设二次函数满足下列条件: ①当时,其最小值为0,且成立; ②当时,恒成立. (1)求的值; (2)求的解析式; (3)求最大的实数,使得存在,只要当时,就有成立
已知首项都是1的两个数列(),满足. (1)令,求数列的通项公式; (2)若,求数列的前项和
已知函数,其中
(1)当时,求在区间上的最大值与最小值; (2)若,求的值.
设函数,其中. (1)求函数的定义域(用区间表示); (2)讨论函数在上的单调性; (3)若,求上满足条件的的集合(用区间表示).
已知椭圆的一个焦点为,离心率为. (1)求椭圆的标准方程; (2)若动点为椭圆外一点,且点到椭圆的两条切线相互垂直,求点的轨迹方程.
设数列的前项和为,满足,,且. (1)求、、的值; (2)求数列的通项公式.