如图①,P是△ABC边AC上的动点,以P为顶点作矩形PDEF,顶点D,E在边BC上,顶点F在边AB上;△ABC的底边BC及BC上的高的长分别为a , h,且是关于x的一元二次方程的两个实数根,设过D, E,F三点的⊙O的面积为,矩形PDEF的面积为 (1)求证:以a+h为边长的正方形面积与以a、h为边长的矩形面积之比不小于4; (2)求的最小值; (3)当的值最小时,过点A作BC的平行线交直线BP与Q,这时线段AQ的长与m , n , k的取值是否有关?请说明理由。
已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF. (1)求证:△DOE≌△BOF; (2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.
某中学为了解学生每天参加户外活动的情况,对部分学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请根据图中信息解答下列问题: (1)求户外活动时间为1.5小时的人数,并补全频数分布直方图; (2)若该中学共有1000名学生,请估计该校每天参加户外活动的时间为1小时的学生人数.
下图是甲、乙两个可以自由旋转的转盘,转盘被等分成若干个扇形,并将其涂成红、白两种颜色,转动转盘. (1)分别计算指针指向红色区域的机会; (2)若要使它们的机会相等,则应如何改变涂色方案?
解方程:.
课堂上老师指出:若a,b,c是△ABC的三边长,且满足a2+b2+c2﹣ab﹣bc﹣ac=0,请判断该三角形的形状.小明在与同学一起合作探究这个问题时,说出了自己的猜想及理由,得到了老师的赞扬.请你写出小明的猜想和理由. 因式分解的应用.