如图,小明家所住楼房的高度米,到对面较高楼房的距离米,当阳光刚好从两楼房的顶部射入时,测得光线与水平线的夹角为.据此,小明便知楼房的高度.请你写出计算过程(结果精确到米.参考数据:).
求不等式组的正整数解.
二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=-1与y轴交于点H. (1)求二次函数的解析式; (2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=-1交于点M,求证:FM平分∠OFP; (3)当△FPM是等边三角形时,求P点的坐标.
如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上. (1)已知:DE∥AC,DF∥BC. ①判断 四边形DECF一定是什么形状?并说明理由. ②裁剪 当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论; (2)折叠 请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.
已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a、b、c分别为△ABC三边的长. (1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由; (2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由; (3)如果△ABC是等边三角形,试求这个一元二次方程的根.
如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连接CD. (1)求证:∠A=∠BCD; (2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.