(本小题满分9分) 如图所示,抛物线与x轴交于A、B两点,直线BD的函数表达式为,抛物线的对称轴l与直线BD交于点C、与x轴交于点E. ⑴求A、B、C三个点的坐标. ⑵点P为线段AB上的一个动点(与点A、点B不重合),以点A为圆心、以AP为半径的圆弧与线段AC交于点M,以点B为圆心、以BP为半径的圆弧与线段BC交于点N,分别连接AN、BM、MN. ①求证:AN=BM. ②在点P运动的过程中,四边形AMNB的面积有最大值还是有最小值?并求出该最大值或最小值.
(本题12分)如图,二次函数的图象与x轴交于两个不同的点A(-2,0)、B(4,0),与y轴交于点C(0,3),连结BC、AC,该二次函数图象的对称轴与x轴相交于点D.(1)求这个二次函数的解析式、点D的坐标及直线BC的函数解析式;(2)点Q在线段BC上,使得以点Q、D、B为顶点的三角形与△相似,求出点Q的坐标;(3)在(2)的条件下,若存在点Q,请任选一个Q点求出△外接圆圆心的坐标.
(本题12分)某商店购进一批冬季保暖内衣,每套进价为100元,售价为130元,每星期可卖出80套.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20套.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应该售价定为多少元?最大销售利润是多少?
(本题10分)如图,东站枢纽建设要新建一条从M地到N地的公路,测得N点位于M点的南偏东30º,A点位于M点的南偏东60º,以A点为中心,半径为400米的圆形区域为文物保护区,又在B点测得BA的方向为南偏东75º,量得MB=400米,请计算后回答公路是否会穿越文物保护区?
(本题10分)如图,从一个边长为1米的正方形铁皮中剪下一个扇形.(1)求这个扇形的面积(结果保留);(2)能否从剩下的余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由.
(本题8分)如图,已知点P是反比例函数图像上一点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交反比例函数图像于E、F两点.(1)用含k1、k2的式子表示以下图形面积:①四边形PAOB;② 三角形OFB;③四边形PEOF;(2)若P点坐标为(-4,3),且PB︰BF=2︰1,分别求出、的值.