(本小题满分12分)从含有两件正品、和一件次品的3件产品中每次任取一件,连续取两次,求分别在下列两种情况下恰有一件是次品的概率。(1)每次取出不放回;(2)每次取出后放回。
已知椭圆上的点到椭圆右焦点的最大距离为,离心率,直线过点与椭圆交于两点.(1)求椭圆的方程;(2)上是否存在点,使得当绕转到某一位置时,有成立?若存在,求出所有点的坐标与的方程;若不存在,说明理由.
已知函数在区间上为单调增函数,求的取值范围.
抛物线的焦点在轴正半轴上,过斜率为的直线和轴交于点,且(为坐标原点)的面积为,求抛物线的标准方程.
(本小题满分12分)设函数R,求函数在区间上的最小值.
已知双曲线的渐近线方程为,并且经过点,求双曲线的标准方程.