如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2DC,F是BE的中点,求证:(1) FD∥平面ABC; (2)FD⊥平面ABE; (3) AF⊥平面EDB.
如图,四棱锥的底面是边长为1的正方形,,点E在棱PB上.(1)求证:平面;(2)当且E为PB的中点时,求AE与平面PDB所成的角的大小.
求与直线垂直,且在两坐标轴上截距之和为3的直线的方程?
已知正方体(1)在正方体的所有棱中,哪些棱所在直线与直线异面(2)求证:
若函数f(x)=sin2ax-sinaxcosax(a>0)的图象与直线y=m相切,相邻切点之间的距离为.(1)求m和a的值;(2)若点A(x0,y0)是y=f(x)图象的对称中心,且x0∈,求点A的坐标.
已知(1)若,求x的范围;(2)求的最大值以及此时x的值.