(本小题共14分)函数,,.(1)①试用含有的式子表示;②求的单调区间;(2)对于函数图像上的不同两点,,如果在函数图像上存在点(其中在与之间),使得点处的切线∥,则称存在“伴随切线”,当时,又称存在“中值伴随切线”。试问:在函数的图像上是否存在两点、,使得存在“中值伴随切线”?若存在,求出、的坐标;若不存在,说明理由。
(本小题12分)已知函数.(Ⅰ)当时,讨论的单调性;(Ⅱ)设当时,若对任意,存在,使,求实数取值范围.
(本小题12分)已知,,直线与函数、的图象都相切,且与函数的图象的切点的横坐标为.(Ⅰ)求直线的方程及的值;(Ⅱ)若,求函数的最大值;(Ⅲ)当时,求证:.
(本小题12分)已知数列的前项和为,,(1)求(2)猜想的表达式,并用数学归纳法证明。
(本小题12分)已知a,b,c∈(0,1),求证:(1-a)b, (1-b)c, (1-c)a.不能同时大于
(本小题共12分) 给定函数和(I)求证: 总有两个极值点;(II)若和有相同的极值点,求的值.