(本小题满分5分)如图,在梯形中,,,,, ,求的长.
计算:(1)用公式法解方程:x2+3x-2=0(2)已知a2+a=0,请求出代数式的值.
我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC的中线, AF⊥BE , 垂足为P.像△ABC这样的三角形均为“中垂三角形”.设,,. 特例探索 (1)如图1,当∠=45°,时,= , ; 如图2,当∠=30°,时, = , ; 归纳证明 (2)请你观察(1)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式; 拓展应用 (3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG, AD= ,AB=3.求AF的长.
如图,已知二次函数L1:y=ax2-2ax+a+3(a>0)和二次函数L2:y=-a(x+1)2+1(a>0)图象的顶点分别为M,N , 与轴分别交于点E, F. (1) 函数的最小值为 ; 当二次函数L1 ,L2的值同时随着的增大而减小时,的取值范围是 ; (2)当时,求的值,并判断四边形的形状(直接写出,不必证明); (3)若二次函数L2的图象与轴的右交点为,当△为等腰三角形时,求方程的解.
九(1)班数学兴趣小组经过市场调查,整理出某种商品在第(1≤≤90)天的售价与销量的相关信息如下表:
已知该商品的进价为每件30元,设销售该商品的每天利润为元.(1)求出与的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
如图,中,,,,动点从点出发,在边上以每秒的速度向点匀速运动,同时动点从点出发,在边上以每秒的速度向点匀速运动,运动时间为秒(),连接。(1)若与相似,求的值;(2)连接,,若,求的值