(本小题满分12分)已知椭圆C:的离心率为,椭圆C上任意一点到椭圆两焦点的距离和为6.(1)求椭圆C的方程;(2)设直线:与椭圆C交于A,B两点,点P(0,1),且,求直线的方程.
选修4—5:不等式选讲 已知函数 (1)若不等式的解集为,求实数a,m的值。 (2)当a =2时,解关于x的不等式
选修4—1:几何证明选讲 如图所示,已知PA是⊙O相切,A为切点,PBC为割线,弦CD//AP,AD、BC相交于 E点,F为CE上一点,且 (1)求证:A、P、D、F四点共圆; (2)若AE·ED=24,DE=EB=4,求PA的长。
已知,函数 (1)求的极小值; (2)若在上为单调增函数,求的取值范围; (3)设,若在(是自然对数的底数)上至少存在一个,使得成立,求的取值范围.
设椭圆的左、右焦点分别为,上顶点为,离心率为, 在轴负半轴上有一点,且 (1)若过三点的圆 恰好与直线相切,求椭圆C的方程; (2)在(1)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围;如果不存在,说明理由.
设数列的前项和为,且满足 (1)求数列的通项公式; (2)在数列的每两项之间都按照如下规则插入一些数后,构成新数列,在两项之间插入个数,使这个数构成等差数列,求的值; (3)对于(2)中的数列,若,并求(用表示).