(本小题10分)如图,在多面体中,四边形是正方形,∥,,,,.(1)求二面角的正切值;(2)求证:平面平面.
如图,在直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB. (1)证明:BC1∥平面A1CD;(2)求二面角D-A1C-E的正弦值.
在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sin θ,ρcos=2.(1)求C1与C2交点的极坐标;(2)设P为C1的圆心,Q为C1与C2交点连线的中点.已知直线PQ的参数方程为(t∈R为参数),求a,b的值.
已知曲线C1的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).
已知曲线C1: (t为参数),C2: (θ为参数).(1)化C1、C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3: (t为参数)距离的最小值.解
在极坐标系中,已知圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a=0相切,求实数a的值.