(选修4—1:几何证明选讲)如图,⊙O1与⊙O2交于M、N两点,直线AE与这两个圆及MN依次交于A、B、C、D、E.求证:AB·CD=BC·DE.
如图,在正三棱柱ABC—A1B1C1中,底面边长及侧棱长均为2,D是棱AB的中点, (1)求证; (2)求异面直线AC1与B1C所成角的余弦值.
如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的中点,求证:平面D1BQ∥平面PAO.
根据下列条件求直线方程 (1)过点(2,1)且倾斜角为的直线方程; (2)过点(-3,2)且在两坐标轴截距相等的直线方程.
(14分)如图①,直角梯形中,,点分别在上,且,现将梯形A沿折起,使平面与平面垂直(如图②). (1)求证:平面; (2)当时,求二面角的大小.
(14分)如图,在直三棱柱中,,点是的中点. (Ⅰ)求证:; (Ⅱ)求证:平面; (Ⅲ)求异面直线与所成角的余弦值.