定义在[-1,1]上的奇函数当时,(Ⅰ)求在[-1,1]上的解析式;(Ⅱ)判断在(0,1)上的单调性,并给予证明.
已知数列为递增等差数列,且是方程的两根.数列为等比数列,且. (Ⅰ)求数列的通项公式; (Ⅱ)若,求数列的前项和.
已知数列满足递推式:. (Ⅰ)若,求与的递推关系(用表示); (Ⅱ)求证:.
已知椭圆的中心为原点,长轴长为,一条准线的方程为. (Ⅰ)求该椭圆的标准方程; (Ⅱ)射线与椭圆的交点为,过作倾斜角互补的两条直线,分别与椭圆交于两点(两点异于).求证:直线的斜率为定值.
,,,平面⊥平面,是线段上一点,,. (Ⅰ)证明:⊥平面; (Ⅱ)若,求直线与平面所成角的正弦值.
已知中的内角、、所对的边分别为、、,若,,且. (Ⅰ)求角的大小; (Ⅱ)求函数的取值范围.