(本小题满分12分)设函数(1)设,讨论函数的单调性;(2)若对任意成立,求实数的取值范围。
已知公差不为零的等差数列的前项和,且成等比数列. (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足,求的前项和.
为了降低能损耗,最近上海对新建住宅的屋顶和外墙都要求建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能消耗费用为8万元.设f(x)为隔热层建造费用与20年的能消耗费用之和. (1)求k的值及f(x)的表达式; (2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
已知点是函数图象上的任意两点,若时,的最小值为,且函数的图像经过点. (Ⅰ)求函数的解析式; (Ⅱ)在中,角的对边分别为,且,求的取值范围.
设和是函数的两个极值点,其中,. (1)求的取值范围; (2)若,求的最大值.注:e是自然对数的底.
如图,在梯形中,,,,平面平面,四边形是矩形,,点在线段EF上. (1)求异面直线与所成的角; (2)求二面角的余弦值.