(本小题满分l4分)已知数列的前项和为,且,()(1) 求数列的通项公式;(2) 设,证明:.
如图,在直角坐标系中,已知△PAB的周长为8,且点A,B的坐标分别为(-1,0),(1,0).(1)试求顶点P的轨迹C1的方程;(2)若动点C(x1,y1)在轨迹C1上,试求动点Q的轨迹C2的方程.
已知函数f(x)=ax+ln x,其中a为常数,e为自然对数的底数.(1)当a=-1时,求f(x)的最大值;(2)当a=-1时,试推断方程|f(x)|=+是否有实数解,并说明理由.
已知Sn是等比数列{an}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.(1)求数列{an}的通项公式;(2)是否存在正整数n,使得Sn≥2 013?若存在,求出符合条件的所有n的集合;若不存在,说明理由.
设y=(log2x)2+(t-2)log2x-t+1,若t在[-2,2]上变化时,y恒取正值,求x的取值范围.
已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,点A在椭圆C上,·=0,3||·||=-5·,||=2,过点F2且与坐标轴不垂直的直线交椭圆于P,Q两点.(1)求椭圆C的方程;(2)线段OF2(O为坐标原点)上是否存在点M(m,0),使得·=·?若存在,求出实数m的取值范围;若不存在,说明理由.