已知椭圆的离心率为,椭圆上任意一点到右焦点的距离的最大值为。(I)求椭圆的方程;(II)已知点是线段上一个动点(为坐标原点),是否存在过点且与轴不垂直的直线与椭圆交于、两点,使得,并说明理由。
已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145. (1)求数列{bn}的通项公式bn; (2)设数列{an}的通项an=loga(其中a>0且a≠1).记Sn是数列{an}的前n项和,试比较Sn与logabn+1的大小,并证明你的结论.
设n∈N*,f(n)=1+++…+,试比较f(n)与的大小.
已知f(x)=ax+(a>1). (1)证明f(x)在(-1,+∞)上为增函数; (2)用反证法证明方程f(x)=0没有负数根.
ABCD为直角梯形,∠BCD=∠CDA=90°,AD=2BC=2CD,P为平面ABCD外一点,且PB⊥BD. (1)求证:PA⊥BD; (2)若PC与CD不垂直,求证:PA≠PD.
若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m. (1)若x2-1比1远离0,求x的取值范围; (2)对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离2ab.