已知函数.(1)证明函数具有奇偶性;(2)证明函数在上是单调函数;(3)求函数在上的最值.
已知等差数列的首项,公差,且第项、第项、第项分别是等比数列的第项、第项、第项. (1)求数列,的通项公式; (2)若数列对任意,均有成立. ①求证:;②求.
在中,角所对的边分别为,点在直线上. (1)求角的值; (2)若,且,求.
如图所示的长方体中,底面是边长为的正方形,为与的交点,,是线段的中点. (1)求证:平面; (2)求三棱锥的体积.
已知函数. (1)试判断函数的单调性; (2)设,求在上的最大值; (3)试证明:对任意,不等式都成立(其中是自然对数的底数).
如图,已知椭圆的左、右焦点分别为,其上顶点为已知是边长为的正三角形. (1)求椭圆的方程; (2)过点任作一动直线交椭圆于两点,记.若在线段上取一点,使得,当直线运动时,点在某一定直线上运动,求出该定直线的方程.