已知数列满足且,数列的前n项和为,(1)求证:数列是等比数列;(2)求;(3)设,求证:。
(本小题满分12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当时,车流速度是车流密度的一次函数. (Ⅰ)当时,求函数的表达式(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)
(本小题满分12分)已知函数的最大值为2是集合中的任意两个元素,的最小值为.(Ⅰ)求的值(Ⅱ)若,求的值
(本小题满分12分)(考生注意:本题请从以下甲乙两题中任选一题作答,若两题都答 只以甲题计分)甲:设数列的前项和为,且;数列 为等差数列,且(Ⅰ)求数列 的通项公式(Ⅱ)若,为数列的前项和,求乙:定义在[-1,1]上的奇函数,已知当时,(Ⅰ)求在[0,1]上的最大值(Ⅱ)若是[0,1]上的增函数,求实数的取值范围
(本小题满分12分)所对的边分别为,且.(Ⅰ)求角A;(Ⅱ)已知求的值.
(本小题满分12分)已知集合.求(CRB )