设函数,(1)令,判断并证明在上的单调性,并求;(2)求函数的最小值;(3)是否存在实数m,n,满足-1<m<n,使得在区间[m,n]上的值域也为[m,n]。
椭圆+=1(a>b>0)的一个顶点为A(0,2),离心率e=.(1)求椭圆的方程;(2)直线l:y=kx-2(k≠0)与椭圆相交于不同的两点M、N,且满足=,·=0,求直线l的方程.
已知函数(1)当时,求上的最大值、最小值:(2)求的单调区间;
如图所示,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=,∠ABC=60°.(1)证明:AB⊥A1C;(2)求二面角A-A1C-B的余弦值.
某高等学校自愿献血的50位学生的血型分布的情况如下表:
(1) 从这50位学生中随机选出2人,求这2人血型都为A型的概率;(2)现有一位血型为A型的病人需要输血,要从血型为A,O的学生中随机选出2人准备献血,记选出A型血的人数为求随机变量的分布列及数学期望.
已知sin(π-α)=,α∈(0,).(1)求sin2α-cos2的值;(2)求函数f(x)=cosαsin2x-cos2x的单调递增区间.