设函数,(1)令,判断并证明在上的单调性,并求;(2)求函数的最小值;(3)是否存在实数m,n,满足-1<m<n,使得在区间[m,n]上的值域也为[m,n]。
是椭圆上异于长轴端点的任一点,,是椭圆的两个焦点,若,.求证:椭圆的离心率.
在中,已知.当动点满足条件时,求动点的轨迹方程.
已知点在椭圆上,,为椭圆的两个焦点,求的取值范围.
过抛物线的焦点作互相垂直的两条直线,分别交准线于两点,又过分别作抛物线对称轴的平行线,交抛物线于两点,求证三点共线.
在椭圆上求一点,使它到左焦点的距离是它到右焦点距离的两倍.