(满分14分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元。设为隔热层建造费用与20年的能源消耗费用之和。(1)求的值及的表达式。(2)隔热层修建多厚时,总费用达到最小,并求最小值。
给定直线动圆M与定圆外切且与直线相切.(1)求动圆圆心M的轨迹C的方程;(2)设A、B是曲线C上两动点(异于坐标原点O),若求证直线AB过一定点,并求出定点的坐标.
某学校为调查高二年级学生的身高情况,按随机抽样的方法抽取200名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有48人.(Ⅰ)在抽取的学生中,身高不超过165cm的男、女生各有多少人?并估计男生的平均身高。(Ⅱ)在上述200名学生中,从身高在170~175cm之间的学生按男、女性别分层抽样的方法,抽出7人,从这7人中选派4人当旗手,求4人中至少有一名女生的概率.
已知,函数(Ⅰ)若求的值;(Ⅱ)求函数的最大值和单调递增区间。
已知函数,其中。(1)若函数有极值,求的值;(2)若函数在区间上为增函数,求的取值范围;(3)证明:
已知椭圆的离心率为,短轴的一个端点到右焦点的距离为,直线交椭圆于不同的两点。(1)求椭圆的方程;(2)若坐标原点到直线的距离为,求面积的最大值。