(本题6分)设全集为R,,,求及
已知数列中,,对于任意的,有 (1)求数列的通项公式; (2)若数列满足:求数列的通项公式; (3)设,是否存在实数,当时,恒成立,若存在,求实数的取值范围,若不存在,请说明理由.
已知各项均为正数的数列满足,, . (Ⅰ)求证:数列是等比数列; (Ⅱ)当取何值时,取最大值,并求出最大值; (Ⅲ)若对任意恒成立,求实数的取值范围.
1已知函数,且,. (Ⅰ)求的值域 (Ⅱ)指出函数的单调性(不需证明),并求解关于实数的不等式; (Ⅲ)定义在上的函数满足,且当时求方程在区间上的解的个数.
设,,Q=;若将,,适当排序后可构成公差为1的等差数列的前三项(I)在使得,,有意义的条件下,试比较的大小; (II)求的值及数列的通项; (III)记函数的图象在轴上截得的线段长为,设,求.
设函数 (1)求曲线在点处的切线方程; (2)求函数的单调区间; (3)若函数在区间内单调递增,求的取值范围.