(本小题满分12分)如图所示,为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变. (Ⅰ)建立适当的平面直角坐标系,求曲线C的方程; (Ⅱ)过D点的直线l与曲线C相交于不同的两点M、N,问是否存在这样的直线使 与平行,若平行,求出直线的方程, 若不平行,请说明理由.
已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x-y-5=0.AC边上的高BH所在直线为x-2y-5=0. 求:(1)顶点C的坐标; (2)直线BC的方程.
如图,直角三角形ABC的顶点A的坐标为(-2,0),直角顶点B的坐标为(0,-2),顶点C在x轴上. (1)求BC边所在直线的方程. (2)圆M是△ABC的外接圆,求圆M的方程.
△ABC的两条高所在直线的方程为2x-3y+1=0和x+y=0,顶点A的坐标为(1,2),求BC边所在直线的方程.
如图,M、N、P分别是正方体ABCD-A1B1C1D1的棱AB、BC、DD1上的点. (1)若=,求证:无论点P在D1D上如何移动,总有BP⊥MN; (2)若D1P:PD=1∶2,且PB⊥平面B1MN,求二面角M-B1N-B的余弦值; (3)棱DD1上是否总存在这样的点P,使得平面APC1⊥平面ACC1?证明你的结论.
已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的任意一点. (1)求证:平面EBD⊥平面SAC; (2)设SA=4,AB=2,求点A到平面SBD的距离;