(本小题满分12分)某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有A、B两个题目,该学生答对A、B两题的概率分别为、,两题全部答对方可进入面试.面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为,至少答对一题即可被聘用(假设每个环节的每个问题回答正确与否是相互独立的).(I)求该学生被公司聘用的概率;(II)设该学生答对题目的个数为,求的分布列和数学期望.
已知x,y,z∈R+,且x+y+z=1 (1)若2x2+3y2+6z2=1,求x,y,z的值. (2)若2x2+3y2+tz2≥1恒成立,求正数t的取值范围.
已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1]. (1)求m的值; (2)若a,b,c∈R,且=m,求证:a+2b+3c≥9.
已知正数a、b、c满足abc=1,求证:(a+2)(b+2)(c+2)≥27.
设a、b、c均为正数,且a+b+c=1.证明: (1)ab+bc+ca≤;(2)≥1
已知a≥b>0,求证:2a3-b3≥2ab2-a2b.