(本小题满分12分)某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有A、B两个题目,该学生答对A、B两题的概率分别为、,两题全部答对方可进入面试.面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为,至少答对一题即可被聘用(假设每个环节的每个问题回答正确与否是相互独立的).(I)求该学生被公司聘用的概率;(II)设该学生答对题目的个数为,求的分布列和数学期望.
如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C. (1)求证:CD是⊙O的切线; (2)若CB=2,CE=4,①求圆的半径;②求DE、DF的长.
某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,若这种商品每件的销售价每提高0.5元,其销售量就减少10件.问(1)每件售价定为多少元时,才能使利润为640元?(2)每件售价定为多少元时,才能使利润最大?
如图,抛物线y1=-x2+3与x轴交于A、B两点,与直线y2=-x+b相交于B、C两点. (1)求直线BC的解析式和点C的坐标; (2)若对于相同的x,两个函数的函数值满足y1≥y2,则自变量x的取值范围是 .
如图,点P在圆O外,PA与圆O相切于A点,OP与圆周相交于C点,点B与点A关于直线PO对称,已知OA=4,PA=4. 求:(1)∠POA的度数; (2)弦AB的长; (3)阴影部分的面积(结果保留π).
已知关于x的一元二次方程x2-3x+2a+1=0有两个不相等的实数根. (1)求实数a的取值范围; (2)若a为符合条件的最大整数,且一元二次方程x2-3x+2a+1=0的两个根为x1,x2,求x12x2+x1x22的值.