(本小题满分13分)如图所示,四棱锥中,是矩形,三角形PAD为等腰直角三角形,面面,分别为和的中点。(1)求证:∥平面;(2)证明:平面平面;(3)求四棱锥的体积。
城市公交车的数量若太多则容易造成资源的浪费;若太少又难以满足乘客需求.某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:分钟):
(1)估计这60名乘客中候车时间少于10分钟的人数; (2)若从上表第三、四组的6人中任选2人作进一步的调查,求抽到的两人恰好来自不同组的概率.
如图所示,扇形,圆心角的大小等于,半径为2,在半径上有一动点,过点作平行于的直线交弧于点. (1)若是半径的中点,求线段的长; (2)设,求面积的最大值及此时的值.
已知数列为等差数列,且. (1)求数列的通项公式; (2)证明.
已知函数(,为自然对数的底数). (1)若曲线在点处的切线平行于轴,求的值; (2)求函数的极值; (3)当的值时,若直线与曲线没有公共点,求的最大值. (注:可能会用到的导数公式:;)
已知椭圆C:()的短轴长为2,离心率为. (1)求椭圆C的方程 (2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足(O为坐标原点),当时,求实数的取值范围?