若椭圆:的离心率等于,抛物线:的焦点在椭圆的顶点上。(1)求抛物线的方程;(2)求过点的直线与抛物线交、两点,又过、作抛物线的切线、,当时,求直线的方程。
(本小题满分16分)已知椭圆中心为,右顶点为,过定点作直线交椭圆于、两点.(1)若直线与轴垂直,求三角形面积的最大值;(2)若,直线的斜率为,求证:;(3)在轴上,是否存在一点,使直线和的斜率的乘积为非零常数?若存在,求出点的坐标和这个常数;若不存在,说明理由.
(本小题满分14分)如图,△ABC为一个等腰三角形形状的空地,腰CA的长为3(百米),底AB的长为4(百米).现决定在该空地内筑一条笔直的小路EF(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等、面积分别为S1和S2.(1) 若小路一端E为AC的中点,求此时小路的长度;(2) 求的最小值.
(本小题满分14分)如图,已知四面体ABCD的四个面均为锐角三角形,E、F、G、H分别为边AB、BC、CD、DA上的点,BD∥平面EFGH,且EH=FG.(1) 求证:HG∥平面ABC;(2) 请在面ABD内过点E作一条线段垂直于AC,并给出证明.
(本小题满分14分)在△ABC中,角A、B、C的对边分别为a、b、c.(1) 若sin=2cos A,求A的值;(2) 若cosA=,b=3c,求sinC的值.
(本小题满分10分)选修4-5:不等式选讲。设函数(Ⅰ)当时,求函数的最小值,并指出取得最小值时的值;(Ⅱ)若,讨论关于的方程=的解的个数.