甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在8,9,10环,且每次射击成绩互不影响,已知甲、乙射击命中环数的概率如下表: (1)若甲、乙两运动员各射击一次,求甲运动员击中8环且乙运动员击中9环的概率;(2)若甲、乙两运动员各自射击两次,求这4次射击中至少有一次击中10环的概率.
在空间直角坐标系中,已知A(3,0,1)和B(1,0,﹣3),试问(1)在y轴上是否存在点M,满足|MA|=|MB|?(2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标.
如图,已知正方体ABCD﹣A′B′C′D′的棱长为a,M为BD′的中点,点N在A′C′上,且|A′N|=3|NC′|,试求MN的长.
已知A(1,﹣2,11),B(4,2,3),C(6,﹣1,4),求证其为直角三角形.
如图,已知矩形ABCD中,|AD|=3,|AB|=4.将矩形ABCD沿对角线BD折起,使得面BCD⊥面ABD.现以D为原点,DB作为y轴的正方向,建立如图空间直角坐标系,此时点A恰好在xDy坐标平面内.试求A,C两点的坐标.
如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,且边长为2a,棱PD⊥底面ABCD,PD=2b,取各侧棱的中点E,F,G,H,写出点E,F,G,H的坐标.