(本题16分)已知函数的最大值为,最小值为.(1)求的值;(2)求函数的最小值并求出对应x的集合.
设函数(1)若关于x的不等式在有实数解,求实数m的取值范围;(2)设,若关于x的方程至少有一个解,求p 的最小值.(3)证明不等式:
已知抛物线,点关于轴的对称点为,直线过点交抛物线于两点.(1)证明:直线的斜率互为相反数; (2)求面积的最小值;(3)当点的坐标为,且.根据(1)(2)推测并回答下列问题(不必说明理由):①直线的斜率是否互为相反数? ②面积的最小值是多少?
为了拓展网络市场,腾讯公司为用户推出了多款应用,如“农场”、“音乐”、“读书”等.某校研究性学习小组准备举行一次“使用情况”调查,从高二年级的一、二、三、四班中抽取10名学生代表参加,抽取不同班级的学生人数如下表所示:
(1)从这10名学生中随机选出2名,求这2人来自相同班级的概率;(2) 假设在某时段,三名学生代表甲、乙、丙准备分别从农场、音乐、读书中任意选择一项,他们选择农场的概率都为;选择音乐的概率都为;选择读书的概率都为;他们的选择相互独立.设在该时段这三名学生中选择读书的总人数为随机变量,求随机变量的分布列及数学期望.
在直角梯形PBCD中A为PD的中点,如下左图。,将沿AB折到的位置,使,点E在SD上,且,如下右图。(1)求证:平面ABCD;(2)求二面角E—AC—D的正切值.
已知等差数列是递增数列,且满(1)求数列的通项公式;(2)令,求数列的前项和