已知函数(1)求的单调减区间;(2)若在区间[-2,2]上的最大值为20,求a的值.
如图,在四棱锥中,底面为直角梯形,且,,侧面底面. 若.(Ⅰ)求证:平面;(Ⅱ)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;(Ⅲ)求二面角的余弦值.
高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组如图是按上述分组方法得到的频率分布直方图.(1)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数。(2)设表示该班两个学生的百米测试成绩,已知求事件“”的概率。
已知以角为钝角的的内角A、B、C的对边分别为a、b、c,,且(1)求角的大小;(2)求的取值范围.
(本题14分)已知定义域为R的函数是奇函数。(1)求a的值;(2)用定义判断该函数的单调性 (3)若对任意的,不等式恒成立,求k的取值范围;
(本题14分)如图,在棱长为1的正方体中,E,P分别是侧棱B1C1,上的中点(1)求证:A1E//平面D1AP(2)求直线AP与平面所成角的正切值